When I was very young, maybe even before I went to school, we often played a game with my parents and grandparents, during which we had to select two homophonous words (that is, one word form that expresses two rather different meanings), and the other people had to guess which word we had selected. This game is slightly different from its Anglo-Saxon counterpart, the homophone game.
In Germany, this game is called Teekesselchen: "little teapot". Therefore, people now also use the word Teekesselchen to denote cases of homophonoy or very advanced polysemy. In this sense, the word Teekesselchen itself becomes polysemous, since it denotes both a little teacup, and the phenomenon that word forms in a given language may often denote multiple meanings.
Homophony and polysemy
In linguistics, we learn very early that we should rigorously distinguish the phenomenon of homophony from the phenomenon of polysemy. The former refers to originally different word forms that have become similar (and even identical) due to the effects of sound change — compare French paix "peace" and pet "fart", which are now both pronounced as
[
pɛ]
. The latter refers
to cases where a word form has accumulated multiple meanings over time, which
are shifted from the original meaning — compare head as in head of
department vs. head as in headache.Given the difference of the processes leading to homophony on the one hand and polysemy on the other, it may seem justified to opt for a strict usage of the terms, at least when discussing linguistic problems. However, the distinction between homophony and polysemy is not always that easy to make.
In German, for example, we have the same word Decke for "ceiling" and "blanket" (Geyken 2010). This may seem to reflect a homophony at first sight, given that the meanings are so different, so that it seems simpler to assume a coincidence. However, it is in fact a polysemy (cf. Pfeiffer 1993, s. v. «Decke»). This can be easily seen from the verb (be)decken "to cover", from which Decke was derived. While the ceiling covers the room, the blanket covers the body.
Given that we usually do not know much about the history of the words in our languages, we often have difficulties deciding whether we are dealing with homophonies or with polysemies when encountering ambiguous terms in the languges of the world. The problem of the two terms is that they are not descriptive, but explanative (or ontological): they do not only describe a phenomenon ("one word form is ambiguous, having multiple meanings"), but also the origin of this phenomenon (sound change or semantic change).
In this context, the recently coined term colexification (François 2008) has proven to be very helpful, as it is purely descriptive, referring to those cases where a given language has the same word form to express two or more different meanings. The advantage of descriptive terminology is that it allows us to identify a certain phenomenon but analyze it in a separate step — that is, we can already talk about the phenomenon before we have found out its specific explanation.
A new contribution
Having worked hard during recent years writing computer code for data curation and analysis (cf. List et al 2018a), my colleagues and I have finally managed to present the fascinating phenomena of colexifications (homophonies and polysemies) in the languages of the world in an interactive web application. This shows which colexifications occur frequently in which languages of the world.
In order to display how often the languages in the world express different concepts using the same word, we make use of a network model, in which the concepts (or meanings) are represented by the nodes in the networks, and links between concepts are drawn whenever we find that any of the languages in the sample colexifies the concepts. The following figure illustrates this idea.
Colexification network for concepts centering around "FOOD" and "MEAL". |
This database and web application is called CLICS, which stands for the Database of Cross-Linguistic Colexifications (List et al. 2018b), and was published officially during the past week (http://clics.clld.org) — it can now be freely accessed by all who are interested. In addition, we describe the database in some more detail in a forthcoming article (List et al. 2018c), which is already available in form of a draft.
The data give us fascinating insights into the way in which the languages of the world describe the world. At times, it is surprising how similar the languages are, even if they do not share any recent ancestry. My favorite example is the network around the concept FUR, shown below. When inspecting this network, one can find direct links of FUR to HAIR, BODY HAIR, and WOOL on one hand, as well as LEATHER, SKIN, BARK, and PEEL on the other. In some sense, the many different languages of the world, whose data was used in this analysis, reflect a general principle of nature, namely that the bodies of living things are often covered by some protective substance.
Colexification network for concepts centering around "FUR". |
Although we have been working with these networks for a long time, we are still far from understanding their true potential. Unfortunately, nobody in our team is a true specialist in complex networks. As a result, our approaches are always limited to what we may have read by chance about all of those fascinating ways in which complex networks can be analyzed.
For the future, we hope to convince more colleagues of the interesting character of the data. At the moment, our networks are simple tools for exploration, and it is hard to extract any evolutionary processes from them. With more refined methods, however, it may even be possible to use them to infer general tendencies of semantic change in language evolution.
References
Geyken A. (ed.) (2010) Digitales Wörterbuch der deutschen Sprache DWDS. Das Wortauskunftssystem zur deutschen Sprache in Geschichte und Gegenwart. Berlin-Brandenburgische Akademie der Wissenschaften: Berlin. http://dwds.de
François A. (2008) Semantic maps and the typology of colexification: intertwining polysemous networks across languages. In: Vanhove, M. (ed.) From Polysemy to Semantic Change, pp 163-215. Benjamins: Amsterdam.
List J.-M., M. Walworth, S. Greenhill, T. Tresoldi, R. Forkel (2018) Sequence comparison in computational historical linguistics. Journal of Language Evolution 3.2. http://dx.doi.org/10.1093/jole/lzy006
List J.-M., S. Greenhill, C. Anderson, T. Mayer, T. Tresoldi, R. Forkel (forthcoming) CLICS². An improved database of cross-linguistic colexifications: Assembling lexical data with help of cross-linguistic data formats. Linguistic Typology 22.2. https://doi.org/10.1515/lingty-2018-0010
List J.-M., S. Greenhill, C. Anderson, T. Mayer, T. Tresoldi, and R. Forkel (eds.) (2018) CLICS: Database of Cross-Linguistic Colexifications. Max Planck Institute for the Science of Human History: Jena. http://clics.clld.org
Pfeifer W. (1993) Etymologisches Wörterbuch des Deutschen. Akademie: Berlin.